Class : XII Sub : Mathematics Time : 3 Hrs M.M. 80

General Instructions :-

All questions are compulsory.

 The question paper consist of 36 question divided in four section A, B, C, D. Section A 20 question of one mark each. Section B 6 question of 2 mark each. Section C 6 question 4 marks each and Section D 4 question 6 marks each.

SECTION - A

Choose and write the correct option in following question.

1. The maximum number of equivalence relation on set A {1,2,3} are

	a.	1			b.	2					
	C.	3			d.	5c					
2.	The	Principal value 5	of Co	S ⁻¹ [½]							
	a.	<u>π</u> 6			b.	$\frac{\pi}{4}$					
	C.	<u>-π</u> 6			d.	1					
3.	A sq	uare matrix A	= [a _{ij}] in	which a _{ij} = 0)i≠j	and a _{ij} = k (Con	stant) f	or i = j is a called-			
	a.	Unit Matrix			b.	Scalar Matrix					
	C.	Null Matrix			d.	Diagonal Matri	x				
4.	Let A be a Square Matrix of Order 3x3 then KA is equal to-										
	a.	k A	b.	k² A	C.	k³ A	d.	3k A			
5.	If A is a singular matrix then A (adja) is -										
	a.	Null Matrix			b.	Scalar Matrix					
	c.	Identity Matrix	(d.	None of these					

6.	The function $f(x) = [x]$ where [x] denotes the greatest integer function is continuous at -								
	a.	4	b.	-2	C.	1	d.	none of these	
7.	f(x) =	$f(x) = x^x$ has a stationary point at -							
	a.	x=e	b.	$x = \frac{1}{e}$	C.	x=1	d.	x= √e	
8.	The point on the curve $y^2 = x$ where the tangent makes an angle of $x = I/4$ with x-axis is -								
	a.	$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} \end{bmatrix}$			b.	$\left[\begin{array}{c} \frac{1}{4} & \frac{1}{2} \\ \end{array}\right]$			
	C.	(4, 2)			d. (1, 1)			
9.	The maximum value of Cosx . Sinx is -								
	a.	<u>1</u> 4	b.	<u>1</u> 2	C.	√2	d.	2√2	
10.	The	sides of an e	equilate	ral triangle ar	e incre	easing at the	rate o	f 2 Cm./Sec. The rate at	
	which area increases when side is 10Cm. is -								

- a. $10 \text{ Cm}^2/\text{s}$ b. $\sqrt{3} \text{ Cm}^2/\text{s}$
- c. $10\sqrt{3}$ Cm²s d. 10/3 Cm²/s

The following questions consist of two statements – Assertion(A) and Reason(R). Answer these questions selecting the appropriate option given below :

- (a) Both A and R are true and R is the correct explanation for A.
- (b) Both A and R are true and R is not the correct explanation for A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 11. Assertion (A) : The function f(x) = [x] is discontinuous at all integers Reason (R) : The function f(x) = [x] is not defined at integer valued.
- 12. Assertion (A) : $f(x) = e^x$ is an increasing function in $(-\infty, \infty)$. Reason (R) : $f(x) = x^2 + x$ is increasing in the interval $(-1/2, \infty)$.
- 13. Assertion (A) : integrating factor of dy/dx + y cot x = cos x is sin x. Reason (R) : integrating factor of dy/dx + Py = Q, is is e^{fpdx}
- 14. $\int e^x (Cosx Sinx) dx$ is equal to-
- 15. $\int_{2}^{2} e^{x} | x \cos \mathbf{I} x | dx \text{ is equal to}$
- 16 The area enclosed by the circle $x^2+y^2 = 2$ is equal to -
- 17. Solution of $\frac{dy}{dx} y = 1$, y (o) = 1 is given by

18. The second derivative of X Sinx is -

- 19. The domain of $f(x) = \operatorname{Sin}^{-1} \sqrt{x-1}$ is
- 20. Write the principal value of tan⁻¹(-1)

Ś<u>SECTION - B</u>

Ques. 21 to Ques. 26 carry 2 marks each.

21. $f(x) = |\cos x - \sin x|$ find $f^{1}(I/6)$

- 22. Prove that $f(x) = \tan x x$ is always increasing.
- 23. Show that all positive integeral powers of symmetric matrix are symmetric.
- 24. if A(a,0), B (0,b) C(1,1) are collinear then using determinant prove that 1/a+1/b=1.
- 25. Find the equation of the tangents to the curve $2x^2 + 3y^2 = 14$, parallel to the line x+3y = 4
- 26. Find the dy/dx

 $y = (Sinx)^{Cosx}$

SECTION - C

Ques 27 to 32 carry 4 marks each.

27.

```
0 - tanA/2
tanA/2 0
```

And I is the identity matrix of order 2 then show that $(I + A) = (I - A).[\cos A - \sin A]$

28. ∫ ^{™/2} log Sin2x dx 0 OR

 $\int_{0}^{\pi/2} \frac{x \, dx}{a^2 \cos^2 x + 6^2 \sin^2 x}$

29. let : $w \rightarrow w$: f (n) when n is even = when n is odd Show that f is invertible 30. X = Sin³ У = Cos find <u>dy</u> dx Show that $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{11x} + 1} \end{cases}$ 31. When $x \neq 0$ When x = 0

is discontinuous at k = 0

32.
$$\int \frac{\sec x}{\sin (2x+\alpha) + \sin \alpha} dx$$

Ques. 33 to 36 carry 6 marks each.

- 33. Using the method of integration, find the area of region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0.
- 34. Show that the height of the cylinder of maximum volume, that can be

inscribed in a sphere of Radius R is $\frac{2R}{\sqrt{3}}$ also.

- 35. Show that (x y) dy = (x + 2y) dx is homogeneous differential equation. Also find the general solution of the given differential equation.
- 36. Let $A = R \{2\}$ and $B = R \{1\}$. If $f : A \rightarrow B$ is define by f(x) = (x-1/x 2). Show that f is one-one and onto.