General Instructions :-

All questions are compulsory.

1. The question paper consist of 36 question divided in four section A, B, C, D. Section A 20 question of one mark each. Section B 6 question of 2 mark each. Section C 6 question 4 marks each and Section D 4 question 6 marks each.

SECTION - A

Choose and write the correct option in following question.

1. The maximum number of equivalence relation on set $\mathrm{A}\{1,2,3\}$ are
a. 1
b. 2
c. 3
d. $5 c$
2. The Principal value of $\operatorname{Cos}^{-1}[1 / 2]$ 5
a. $\frac{\pi}{6}$
b. $\frac{\pi}{4}$
c. $\frac{-\pi}{6}$
d. 1
3. A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ in which $\mathrm{a}_{\mathrm{ij}}=0 \mathrm{i} \neq \mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=\mathrm{k}$ (Constant) for $\mathrm{i}=\mathrm{j}$ is a called-
a. Unit Matrix
b. Scalar Matrix
c. Null Matrix
d. Diagonal Matrix
4. Let A be a Square Matrix of Order 3×3 then $|\mathrm{KA}|$ is equal to-
a. $\mathrm{k}|\mathrm{A}|$
b. $\quad k^{2}|A|$
c. $\quad \mathrm{k}^{3}|\mathrm{~A}|$
d. $\quad 3 \mathrm{k}|\mathrm{A}|$
5. If A is a singular matrix then $\mathrm{A}(\mathrm{adja})$ is -
a. Null Matrix
b. Scalar Matrix
c. Identity Matrix
d. None of these
6. The function $f(x)=[x]$ where $[x]$ denotes the greatest integer function is continuous at -
a. 4
b. $\quad-2$
c. 1
d. none of these
7. $f(x)=x^{x}$ has a stationary point at -
a. $\quad x=e$
b. $x=\frac{1}{e}$
c. $\quad x=1$
d. $x=\sqrt{e}$
8. The point on the curve $y^{2}=x$ where the tangent makes an angle of $x=\pi / 4$ with x-axis is -
a. $\left[\frac{1}{2}, \frac{1}{4}\right]$
b. $\left[\frac{1}{4}, \frac{1}{2}\right]$
c. $(4,2)$
d. $(1,1)$
9. The maximum value of $\operatorname{Cos} x . \operatorname{Sin} x$ is -
a. $\frac{1}{4}$
b. $\frac{1}{2}$
c. $\quad \sqrt{2}$
d. $\quad 2 \sqrt{2}$
10. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{Cm} . / \mathrm{Sec}$. The rate at which area increases when side is 10 Cm . is -
a. $\quad 10 \mathrm{Cm}^{2} / \mathrm{s}$
b. $\quad \sqrt{3} \mathrm{Cm}^{2} / \mathrm{s}$
c. $\quad 10 \sqrt{3} \mathrm{Cm}^{2} \mathrm{~s}$
d. $\quad 10 / 3 \mathrm{Cm}^{2} / \mathrm{s}$

The following questions consist of two statements - Assertion(A) and Reason(R). Answer these questions selecting the appropriate option given below :
(a) Both A and R are true and R is the correct explanation for A.
(b) Both A and R are true and R is not the correct explanation for A .
(c) A is true but R is false.
(d) A is false but R is true.
11. Assertion (A) : The function $f(x)=[x]$ is discontinuous at all integers

Reason (R) : The function $f(x)=[x]$ is not defined at integer valued.
12. Assertion $(A): f(x)=e^{x}$ is an increasing function in $(-\infty, \infty)$.

Reason $(R): f(x)=x^{2}+x$ is increasing in the interval $(-1 / 2, \infty)$.
13. Assertion (A) : integrating factor of $d y / d x+y \cot x=\cos x$ is $\sin x$.

Reason (R) : integrating factor of $d y / d x+P y=Q$, is is $e^{f p d x}$
14. $\int e^{x}(\operatorname{Cos} x-\operatorname{Sin} x) d x$ is equal to-
15. $\int_{2}^{2} e^{x}|x \operatorname{Cos} \pi x| d x$ is equal to

16 The area enclosed by the circle $x^{2}+y^{2}=2$ is equal to -
17. Solution of $\frac{d y}{d x}-y=1, y(0)=1$ is given by
18. The second derivative of $X \operatorname{Sin} x$ is -
19. The domain of $f(x)=\operatorname{Sin}^{-1} \sqrt{x-1}$ is
20. Write the principal value of $\tan ^{-1}(-1)$

SECTION - B

Ques. 21 to Ques. 26 carry 2 marks each.
21. $f(x)=|\operatorname{Cos} x-\operatorname{Sin} x|$ find $f^{1}(\pi / 6)$
22. Prove that $f(x)=\tan x-x$ is always increasing.
23. Show that all positive integeral powers of symmetric matrix are symmetric.
24. if $A(a, 0), B(0, b) C(1,1)$ are collinear then using determinant prove that $1 / a+1 / b=1$.
25. Find the equation of the tangents to the curve $2 x^{2}+3 y^{2}=14$, parallel to the line $x+3 y=4$
26. Find the $d y / d x$

$$
y=(\operatorname{Sin} x)^{\operatorname{Cos} x}
$$

SECTION - C

Ques 27 to 32 carry 4 marks each.
27.
$\left|\begin{array}{cc}0 & - \\ \tan \mathrm{A} / 2 / 2 \\ & 0\end{array}\right|$

And I is the identity matrix of order 2 then show that $(I+A)=(I-A) \cdot[\cos A-\sin A]$
28. $\int_{0}^{\pi / 2} \log \operatorname{Sin} 2 x d x$

OR
$\int_{0}^{\pi / 2} \frac{x d x}{a^{2} \operatorname{Cos}^{2} x+6^{2} \operatorname{Sin}^{2} x}$
29. let $: w \rightarrow w: f(n)= \begin{cases}n+1 & \text { when } n \text { is even } \\ n-1 & \text { when } n \text { is odd }\end{cases}$

Show that f is invertible
30. $x=\frac{\operatorname{Sin}^{3} t}{\sqrt{\operatorname{Cos}^{2} t}}$
$y=\frac{\operatorname{Cos}^{3} t}{\sqrt{\operatorname{Cos}^{2} t}}$
find

$$
\frac{d y}{d x}
$$

31. Show that $f(x)=\left\{\left[\frac{e^{1 / x}-1}{e^{11 x}+1}\right]\right.$

When $\mathrm{x} \neq 0$
When $\mathrm{x}=0$
is discontinuous at $\mathrm{k}=0$
32.

$$
\int \frac{\operatorname{Sec} x}{\operatorname{Sin}(2 x+\alpha)+\operatorname{Sin} \alpha} d x
$$

Ques. 33 to 36 carry 6 marks each.
33. Using the method of integration, find the area of region bounded by the lines $3 x-2 y+1=$ $0,2 x+3 y-21=0$ and $x-5 y+9=0$.
34. Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of Radius R is $\frac{2 R}{\sqrt{3}}$ also.
35. Show that $(x-y) d y=(x+2 y) d x$ is homogeneous differential equation. Also find the general solution of the given differential equation.
36. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \longrightarrow B$ is define by $f(x)=(x-1 / x-2)$. Show that f is one-one and onto.

