
QUESTIONS FROM CBSE PREVIOUS YEARS BOARD EXAMINATIONS/SAMPLE PAPERS

1. The graph shows (Fig. 11.39) the variation of the maximum kinetic energy of the emitted photoelectron with the frequency of the incident radiation for a given metal.

Which of the following gives the work function of the metal?

- (a) x-intercept
- (b) y-intercept
- (c) the slope of the graph
- (d) the area under the graph

(CBSE Practice Question 2023-24)

Fig. 11.39

2. Given below are two charged subatomic particles P and Q, that are accelerated through same potential difference V. Here, Masses: $m_P = m_O$; Charges: $\frac{1}{2} q_P = q_Q$.

Which of the two subatomic particles will have longer de Broglie wavelength?

- (a) Particle P, because it has the greater momentum
- (b) Particle Q, because it has the greater momentum
- (c) Particle P, because it has the smaller momentum

(CBSE Practice Question 2022-23) (d) Particle Q, because it has the smaller momentum

3. A metallic plate exposed to white light emits electrons. For which of the following colours of light, the stopping potential will be maximum?

(a) Blue

- (b) Yellow
- (c) Red

(d) Violet

(CBSE Sample Question Paper 2022-23)

4. The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is:

- (a) 4125 Å
- (b) 2062.5 Å
- (c) 3000 Å
- (d) 6000 Å

(CBSE Sample Question Paper 2022-23)

5. A graph is plotted between the stopping potential (on y-axis) and the frequency of incident radiation (on x-axis) for a metal. The product of the slope of the straight line obtained and the magnitude of charge on an electron is equal to:

(a) h

- (b) $\frac{h}{c}$
- (c) $\frac{2h}{c}$
- (d) $\frac{h}{2c}$ (CBSE 2023)

6. Light of frequency 6.4×10^{14} Hz is incident on a metal of work function 2.14 eV. The maximum kinetic energy of the emitted electrons is about:

- (a) 0.25 eV
- (b) 0.51 eV
- (c) 1.02 eV
- (d) 0.10 eV

(CBSE 2023)

1	and an alph	na narticle have the	same kinetic energy.	The ratio of de Brook
7.	A proton and an alph	d with the proton to	that with the alpha p	article is:
	wavelengths associate		(c) $2\sqrt{2}$	(d) $\frac{1}{2}$ (CBSE 2023)
	(a) 1	(b) 2		2 2023)
8.	The energy of a photon of wavelength λ is			
		(b) hc/λ	$(c) \wedge nc$	(d) λh/c (CBSE 2023)
9.	which of the following	g graphs correctly re	presents the variation	of a particle momentum
	with its associated de	-Broglie wavelength	p ∱ ,	
	p †			
			(b)	
	(a)		(6)	à
	λ			in traditional of
	n.		$p \uparrow$	
	(c)		(d)	
	-			λ (CDSE 2022)
	1			(CBSE 2023)
10.	Light of frequency 1.5 v_0 is incident on a photosensitive material of threshold frequency of the incident radiation is kept constant and intensity is incident.			
	the photo current wi	μ:	(b) decrease	
	(a) increase(c) not change		(d) first decrease and	then become zero
				(CBSE 2023)
11.	Photons of energies 1 eV and 2 eV are successively incident on a metallic surface of work function 0.5 eV. The ratio of kinetic energy of most energetic photoelectrons in			
	work function 0.5 eV	7. The ratio of kinetic	e energy of most ener	getic photoelectrons in
	the two cases will be			(d) 1: 4 (CBSE 2020)
	(a) 1 : 2	(b) 1 : 1	(c) 1:3	(a) 1:4 (CBSE 1)
12.	The kinetic energy of	f a proton and that of	an α-particle are 4 eV	and I ev, respectively
			ssociated with them,	(d) $4:1$ (CBSE 2020)
12	(a) 2:1	(b) 1 : 1	(c) 1 : 2	from a source of
13.	A photocell connected in an electrical circuit is placed at a distance 'd' from a source light. As a result, current I flows in the circuit. What will be the current in the circuit when the distance is reduced to 'd'?'?			
	when the distance is	reduced to 'd/2'?	nount. That Will be th	2020
		/// A.	(c) 4I	(d) $I/2$ (CBSE 2020)
14.	If photons of frequency v are incident on the surfaces of metals. A and B of thresh frequencies $v/2$ and $v/3$ respectively, the ratio of the maximum kinetic energy of electrons.			
		at from B is		5.5
	(a) 2 : 3	(b) 3 : 4	(c) 1 : 3	(d) $\sqrt{3}:\sqrt{2}$ (CBSE 2020)

. . .

A STREET WASTE