QUESTIONS FROM CBSE PREVIOUS YEARS BOARD EXAMINATIONS/SAMPLE PAPERS

MULTIPLE CHOICE QUESTIONS (MCQs)

1. When an electron in an atom moves from the ground state to a higher energy level, what happens to its kinetic and potential energies?

	Kinetic Energy	Potential Energy
(a)	increases	increases
(b)	increases	decreases
(c)	decreases	increases
(d)	decreases	decreases

(CBSE Practice Question 2023-24)

2 The emission spectrum of an element is the spectrum of frequencies of *em* radiations emitted due to electrons making a transition from a higher energy state to a lower energy state. The diagram below shows electrons transitioning from higher energy states to lower energy states.

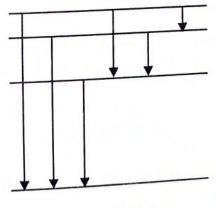


Fig. 12.24

(a)

	(c) (d)			
	(CBSE Practice Question 2023-24)			
3.	ach of the statements below are based on the properties of electron orbits in a hydrace. Identify a statement that correctly satisfies the Bohr's model of an atom.			
	(a) The angular momentum of the orbiting electron is $3h/\pi$.			
	(1) The notantial energy of the electron in any stable of the positive			
	The radius of the second electron orbit is $2a_0$, where a_0 is Bohn's radius.			
	(d) An amount of energy -3.4 eV given to an electron in its second orbit with let it escape the atom. (CBSE Practice Question 2022-23)			
1	When alpha particles are sent through a thin gold foil, most of them go straight through the			
	foil, because			
	(a) alpha particles are positively charged			
	(b) the mass of an alpha particle is more than the mass of an electron			
	(c) most of the part of an atom is empty space			
	(B) 1-1-1- resticted move with high velocity (CBSE Sample Question Paper 2023-24)			
10	The energy of an electron in <i>n</i> th orbit of hydrogen atom is $E_n = -13.6/n^2$ eV. The negative			
2 *	sign of energy indicates that			
	(a) electron is free to move			
	(b) electron is bound to the nucleus			
	(c) kinetic energy of electron is equal to potential energy of electron (d) atom is radiating energy (CBSE Sample Question Paper 2023-24)			
5.	The radius of the innermost electron orbit of a hydrogen atom is 5.3×10^{-11} m. The radius of the $n = 3$ orbit is			
	(a) 1.01×10^{-10} m (b) 1.59×10^{-10} m (c) 2.12×10^{-10} m (d) 4.77×10^{-10} m			
	(CBSE Sample Question Paper 2022-23)			
7.	The radius of the n^{th} orbit in Bohr model of hydrogen atom is proportional to:			
	(a) $\frac{1}{n^2}$ (b) $\frac{1}{n}$ (c) n^2 (d) n			
	(CBSE 2023)			
8.	Hydrogen atom initially in the ground state, absorbs a photon which excites it to $n = 5$ level. The wavelength of the photon is:			
	(a) 975 nm (b) 740 nm (c) 523 nm (d) 95 nm (CBSE 2023)			
9.	A hydrogen atom makes a transition from $n = 5$ to $n = 1$ orbit. The wavelength of photon emitted is λ . The wavelength of photon emitted when it makes a transition from $n = 5$ to $n = 2$ orbit is			
	(a) $\frac{8}{7} \lambda$ (b) $\frac{16}{7} \lambda$ (c) $\frac{24}{7} \lambda$ (d) $\frac{32}{7} \lambda$ (CBSE 2023)			
	The ratio of maximum frequency and minimum frequency of light emitted in Balmer series of hydrogen spectrum, in Bohr's model is:			

Which of the following spectrums most closely corresponds to the above transitions?

(b)

17. In the α-particle scattering experiment, the shape of the trajectory of the scattered α-particles depend upon:

(a) only on impact parameter.

(b) only on the source of α-particles.

(c) both impact parameter and source of α-particles.

(d) impact parameter and the screen material of the detector.

(CBSE 2020)